Evidence-Aware Inferential Text Generation with Vector Quantised Variational AutoEncoder

Daya Guo¹, Duyu Tang², Nan Duan², Jian Yin¹, Daxin Jiang² and Ming Zhou² ¹Sun Yat-sen University ²Microsoft Research

Task Definition

Inferential Text Generation

- (1) Take an event as the input
- (2) Generate multiple inferences (e.g. intent of participants).

Related Works

- (1) Sequence-to-Sequence approaches. [Rashkin et al.,2018; Sap et al.,2019]
- (2) Pre-trained language models such as GPT-2. [Bosselut et al., 2019]
- (3) Introduce variational autoencoder to generate diversified inferences. [Du et al., 2019]

Motivation

- (1) Background knowledge usually provides crucial evidence to generate reasonable inferences.
- (2) Different background knowledge could help generate inferences in different perspective.

Overview of Our Approach

Overview

(1) First , the search engine retrieves top K evidence from a large text corpus.

Overview

- (1) First , the search engine retrieves top K evidence from a large text corpus.
- (2) Second, VQ-VAE takes an event as the input, and outputs a discrete latent variable z.

Overview

- (1) First , the search engine retrieves top K evidence from a large text corpus.
- (2) Second, VQ-VAE takes an event as the input, and outputs a discrete latent variable z.
- (3) Lastly, the decoder takes the latent variable and retrieved evidence as the input and generates the inferential text.

VQ-VAE: Vector Quantised-Variational AutoEncoder

Advantages

- (1) Avoiding the problem of posterior collapse.
- (2) Convenient visualization.

(1) Text Corpus: BookCorpus [Zhu et al., 2015] of 11,038 story books.

- (1) Text Corpus: BookCorpus [Zhu et al., 2015] of 11,038 story books.
- (2) Retrieve evidence from corpus by Elastic Search engine.

- (1) Text Corpus: BookCorpus [Zhu et al., 2015] of 11,038 story books.
- (2) Retrieve evidence from corpus by Elastic Search engine.
- (3) Transformer with two layers is used to encode retrieved evidence.

(1) The relevance of evidence is different depending on the semantic of inference.

(1) The relevance of evidence is different depending on the semantic of inference.

(2) Since targets are unseen in the inference phase, we utilize the latent variable z to select evidence.

$$p_s(c_k|z) = \begin{cases} 1 & if \ k = \arg\min_j ||h_{c_j} - z||_2\\ 0 & otherwise \end{cases}$$

Evidence-Aware Generator

Pre-trained language model GPT-2 as our generator:

- (1) Given an event x, we first sample a latent variable z from the codebook p(z|x).
- (2) We then select relevant evidence c according to the context distribution p(c|z).
- (3) Finally, the generator p(y|x,c) concatenate the event and selected evidence as the input and generates the inference y

Dataset

- (1) We conduct experiments on Event2Mind and ATOMIC datasets.
- (2) Both datasets contain about25,000 unique events.

Event	Inference dim	Description	Target		
PersonX visits friends	xIntent	because PersonX wanted to	to enjoy their time, to catch up with them		
	xNeed	before that, PersonX needed to	to go to their location, to call them		
	xAttr	PersonX is seen as	friendly, sociable		
	xEffect	has an effect on PersonX	have a nice party, have good dinner		
	xWant	as a result, PersonX wants	have fun, enjoy and spend time		
	xReact	as a result, PersonX feels	happy, comfortable		
	oReact	as a result, others feel	happy, pleased		
	oWant	as a result, others want	to wind down, to clean their home		
	oEffect	has an effect on others	make the relation stronger, bring a guest into their home		

Table 7: Examples of ATOMIC dataset, including nine inference dimensions. For inference dimensions, "x" and "o" refers to PersonX and others, respectively (e.g. description of "xIntent": *Because PersonX wants*)..

Experimental Results

Automatic Evaluation

Accuracy: average BLEU-2 score. (1)

Methods	xIntent	xNeed	xAttr	xEffect	xReact	xWant	oEffect	oReact	oWant	Overall	Methods	xIntent	xReact	oReact	Overall
Single Task							Sin	gle Task							
S2S	8.17	12.35	2.96	5.26	3.43	13.44	6.42	4.09	7.08	7.02	S2S	2.75	2.11	5.18	3.35
VRNMT	9.52	13.35	4.87	4.42	7.64	9.80	13.71	5.28	10.79	8.82	VRNMT	4.81	3.94	6.61	4.03
CWVAE	12.12	15.67	5.63	14.64	8.13	15.01	11.63	8.58	13.83	11.69	CWVAE	12.98	5.65	6.97	8.53
Multi Task						Mu	lti Task								
S2S*	24.53	23.85	5.06	9.44	5.38	24.68	7.93	5.60	21.30	14.20	\$2\$*	19 18	4.81	4 29	9.43
COMET*	25.82	25.54	5.39	10.39	5.36	26.41	8.43	5.65	21.96	15.00	COMET*	21.64	5 10	4.26	10.27
COMET	-	-	-	-	-	-	-	-	-	15.10		21.04	5.10	4.50	10.37
EA-VQ-VAE	26.89	25.95	5.72	10.96	5.68	25.94	8.78	6.10	22.48	15.40	EA-VQ-VAE	23.39	5./4	4.81	11.31

Table 1: BLEU score on nine inference dimensions of the ATOMIC test dataset with different approaches. For Table 2: BLEU score on three inference dimensions of inference dimensions, "x" and "o" refers to PersonX and others, respectively (e.g. "xAttr": attribute of PersonX, the Event2Mind test dataset with different approaches. "oEffect": effect on others). The tag (*) means re-implementation.

For inference dimensions, "x" and "o" refers to PersonX and others, respectively. The tag (*) means reimplementation.

Experimental Results

Automatic Evaluation

- (1) Accuracy: average BLEU-2 score.
- (2) Diversity: the number of distinct unigrams (dist-1) and bigrams (dist-2).

Methods	Event	2Mind	ATOMIC		
withindus	dist-1	dist-2	dist-1	dist-2	
S2S*	638	1,103	2,193	5,761	
COMET*	1,794	4,461	3,629	12,826	
EA-VQ-VAE	1,942	4,679	3,918	14,278	

Table 3: The number of distinct n-gram (dist-1 and dist-2) overall on Event2Mind and ATOMIC test dataset with different multi-task learning based methods. The tag (*) means re-implementation.

Experimental Results

Automatic Evaluation

- (1) Accuracy: average BLEU-2 score.
- (2) Diversity: the number of distinct unigrams (dist-1) and bigrams (dist-2).

Human Evaluation

- (1) Sample 100 examples from the test set.
- (2) Generate 10 candidates from different models.
- (3) Ask five human to identify.

Methods	Event2Mind	ATOMIC
S2S*	0.3901	0.5174
COMET*	0.4874	0.6379
EA-VQ-VAE	0.5072	0.6528

Table 4: Human score (accuracy) of generations on Event2Mind and ATOMIC test dataset. The tag (*) means re-implementation.

Ablation Study & Analysis

Methods	xIntent	xReact	oReact	Overall
EA-VQ-VAE	23.37	5.83	4.87	11.32
- w/o evidence	21.69	5.36	4.48	10.51
- w/o VQ-VAE	21.87	5.41	4.60	10.63
- w/o SL	21.95	5.54	4.57	10.69

Table 5: BLEU score on the Event2Mind dev dataset with different approaches. SL is short for separately learning.

Ablation Study & Analysis

Figure 4: Overall performance with different number of retrieved evidence on Event2Mind dev dataset.

Case Study

Figure 5: An examples of Event2Mind dataset on the xIntent dimension (i.e. "PersonX wants").

Conclusion

- (1) We present an evidence-aware generative model based on VQ-VAE, which automatically finds evidence as background knowledge to guide the generation.
- (2) In the task of inferential text generation, our approach achieves state-of-the-art performances on ATOMIC and Event2Mind datasets.

Thanks